NASA/CR-2009-215703
NIA Report No. 2008-09

NATIONAL [N i 72
INSTITUTE OF ||
AEROSPACE \B=

Design and Verification of a Distributed
Communication Protocol

César A. Mufoz and Alwyn E. Goodloe
National Institute of Aerospace, Hampton, Virginia

April 2009

NASA STI Program . .. in Profile

Sinceits founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
thisimportant role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA inthe NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or amajor significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
speciaized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

TECHNICAL TRANSLATION. English-
language trandations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services aso include creating custom

thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI

program, see the following:

Access the NASA STI program home page at
http: //mww.sti.nasa.gov

E-mail your question viathe Internet to
hel p@sti.nasa.gov

Fax your question to the NASA STI Help Desk
at 443-757-5803

Phone the NASA STI Help Desk at
443-757-5802

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2009-215703
NIA Report No. 2008-09

NATIONAL
INSTITUTE DF |

AEROSPALCE %’3 |
Design and Verification of a Distributed
Communication Protocol

César A. Mufoz and Alwyn E. Goodloe
National Institute of Aerospace, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Cooperative Agreement NNXOBAE37A

April 2009

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

DESIGN AND VERIFICATION OF A DISTRIBUTED
COMMUNICATION PROTOCOL~

César Munoz ' and Alwyn E. Goodloe *

CONTENTS
1 Introduction 1
2 Protocol Stack 2

3 Specification of Protocol Layers 3
3.1 Application Layer 4
3.2 Weak Delivery Protocol (WDP) 5
3.3 Guaranteed Delivery Protocol (GDP) 6

3.3.1 Sliding-Window Protocol 6
3.3.2 Bounded Buffers oo 8

3.3.3 Sender 9

3.3.4 Receiver 11

3.4 Link Layer o 12
3.5 Ether. 13

4 Specification of Sender and Receiver Processes 14
5 Protocol Verification 17
5.1 Distributed Systemo 17
5.2 Proving Invariants on WDP and GDP 19
5.3 Proving Liveness for GDP 22
5.4 Proving Invariants on WDP || GDP 24

6 Related Work 26
7 Conclusion 26

1 INTRODUCTION

AirSTAR [17, 2| is an integrated flight test infrastructure which utilizes remotely piloted,
powered subscale models for flight testing developed at NASA’s Langley Research Center
(LaRC). When flying, commands from the ground-based pilot are broadcast to the aircraft
and telemetry data from the aircraft are broadcast to the ground station. The goal of this

*This work was supported by the National Aeronautics and Space Administration under NASA Cooper-
ative Agreement NNX08AE37A.

TSenior Staff Scientist, National Institute of Aerospace (NIA), 100 Exploration Way, Hampton VA, 23666,
Email: munoz@nianet.org

tPostdoctoral Associate, National Institute of Aerospace (NIA), 100 Exploration Way, Hampton VA,
23666, Email: Alwyn.Goodloe@nianet.org

work is to design and verify a communication protocol that satisfies AirSTAR’s safety and
operational requirements:

e [t is of paramount importance that commands from the pilot be treated by the com-
munication system as urgent. That is, they are to be broadcast to the aircraft as soon
as possible and should be processed at the aircraft with all due speed. This means
that there should be no buffering of these data at either the sender or receiver. This
requirement is called as the weak delivery requirement since data lost in transmission
should not be retransmitted as they would be considered stale by the time they arrived
at the pilot.

e Engineers on the ground need to receive all telemetry data produced by the aircraft in
order to analyze aircraft performance as well as to plan future aircraft flights. In con-
trast to the previous case, the protocol should guarantee that all of telemetry data are
eventually delivered. This requirement is called as the guaranteed delivery requirement.

Since the requirements of weak and guaranteed delivery are in some sense orthogonal to
each other, we can structure the solution as two different protocols: the weak delivery proto-
col (WDP) and the guaranteed delivery protocol (GDP). In addition to these two protocols,
other protocols are needed to support communication between the aircraft and ground sta-
tion. As usual in protocol design, this collection of protocols is structured in a protocol stack
(see Figure 1).

This document contains a description of a protocol that satisfies both the weak deliv-
ery and the guaranteed delivery requirements. This protocol is intended for the AirSTAR
remotely operated vehicle. In addition to the high-level description of the protocol stack,
we provide an overview of its formal specification and verification. For readability pur-
poses, we use standard mathematical notation as much as possible. However, the math-
ematical development presented here has been formally specified and verified in the Pro-
totype Verification System (PVS) [19]. This development is electronically available from
http://research.nianet.org/fm-at-nia/AirSTAR.

Section 2 gives a brief overview of the protocol stack. The layers of the protocol stack,
i.e., application layer, WDP, GDP, and link layer, are specified in Section 3. Section 4 shows
how sender and receiver processes, that conform to the stack protocol, are specified. The
formal verification that the proposed protocol satisfies the weak and guaranteed delivery
requirements is described in Section 5.

2 PROTOCOL STACK

Protocols are generally structured in layers, where each layer handles a different aspect of
message processing [24]. As a message moves down the stack, each layer performs some
processing and adds packet headers. As a message moves up the stack, the corresponding
packet headers are removed. The classic ISO seven layers model partitions the stack into
a physical layer, link layer, network layer, transport layer, session layer, presentation layer,
and application layer. Protocols for embedded systems used in the aerospace arena are
usually not sophisticated enough to warrant but a few layers. For instance, in our case,
the protocol simply broadcasts information so there is no need for a network layer, which
performs routing. The layers of our protocol stack roughly correspond to the application

Application

App-tO-WDP WDP—to—App App—to—GDP GDP-to-App

Weak Delivery Guaranteed Delivery
WDP—to—LL LL—to—WDP GDP-to-LL LL-to—GDP
Link Layer

Input l 1 Output
Ether

Figure 1: Protocol stack

layer, transport layer, link layer, and physical layer. Given that we do not currently have any
details about the physical layer, it will not be explicitly modeled in this document. However,
we do model an abstract communication medium that we call ether.

The proposed protocol stack is composed of the four layers illustrated in Figure 1. At the
top is the application layer. The AirSTAR flight-computer software as well as the ground-
control software are presumed to reside here. All messages sent from the application layer are
sent via either WDP or GDP depending on whether weak or guaranteed delivery is required.
The application is assumed to decide which protocol is used to send which type of message.
The next layer down corresponds to the transport layer and it is here that the WDP and
GDP protocols reside. WDP simply sends a message, but provides no guarantee that the
message ever arrived at its destination. Hence, messages may be lost or corrupted in transit
and are never resent. GDP is designed to provide its user with a guarantee that any message
sent is eventually received, and that they are received in the same order they are sent. The
differences between WDP and GDP are similar to the differences between UDP and TCP,
but both are considerably simpler. The link layer is the next layer in our protocol stack.
Note that the WDP and GDP protocols directly interface with the link layer as there is no
network layer. The link layer performs error detection and multiplexes outgoing messages
from the WDP and GDP layers and demultiplexes the incoming messages. The last layer is
the ether, which correspond to the communication medium.

3 SPECIFICATION OF PROTOCOL LAYERS

In our model, the protocol layers are connected using First-In First-Out (FIFO) queues.
In Figure 1, each queue is represented by a small rectangle with an arrow pointing in the
direction of the information flow. The queues are named x_to_y indicating that the data
moves from layer x to layer y. The names of the queues are given as follows:

App_to_WDP | WDP_to_App | App-to_GDP | GDP_to_App
WDP_to_LL | LL_to_WDP | GDP_to_LL | LL_to_GDP

The WDP_to_LL, LL_to_WDP, GDP_to_LL, and LL_to_GDP queues form the link interface (see 3.4).

In PVS, these queues are defined as finite sequences, i.e., a record with two fields: length,
which contains the length of the queue, and seq an array indexed by 0...length — 1 con-
taining the data. The top of the queue is indexed by 0. Although an implementation would
most likely adapt a more efficient scheme than FIFO queues, the behavior of frames moving
from one layer to another would remain the same.

The ether, which represents the communication medium, interacts with the protocol
stack through two unidirectional communication channels: the input channel that flows
from the protocol stack to the medium, and the output channel that flows from the medium
to protocol stack. The input and output channels form the ether interface (see 3.5). In
PVS, these channels are defined as bags, i.e., multisets reflecting the possibility of duplicate
messages and out of order delivery.

Before examining each layer in some depth, let us illustrate how a message sent via WDP
flows down the stack, over the ether, and back up the stack. The node sending the message
is denoted as the sender and the node receiving the message is denoted the receiver. The
sender’s application layer places the message into the App_to WDP queue. The WDP layer
processing removes it and places it into the WDP_to_LL queue. The link layer will remove this
and place it into ether input. The link layer at the receiver will remove this message from
the ether output and place it into the receiver’s LL_to_WDP queue. The receiver’s WDP layer
will process the message placing it in the WDP_to_App queue from which the application on
the receiving side removes it for processing.

3.1 Application Layer

The application layer is where all user and flight computer applications reside. We do not
know what specific applications currently exist or what applications may be created in the
future so this layer is treated quite abstractly as is traditional in the networking community.
This layer may be composed of many processes, but we assume that at both the ground
station and the aircraft, only a single process handles the processing of incoming messages.
This simplification is realistic based on the current operation of the aircraft and allows us to
forgo a complex socket-like mechanism.

In PVS, the application layer is modeled as two pairs of queues. The App_to_WDP queue
at the sender that contains the data that must be sent in a timely fashion, e.g., via WDP,
and the APP_to_GDP queue containing data that must be sent reliably, e.g., via GDP. The
WDP_to_APP and GDP_to_APP queues hold data that have been received from WDP and GDP,
respectively. It is assumed that the initial state of App_to_WDP and APP_to_GDP at the sender
contain all of the data that will be sent and the WDP_to_APP and GDP_to_APP queues at
the receiver are empty. This allows us to formulate a correctness criteria for the weak
delivery protocol and the guaranteed-delivery protocol in terms of relations stating that the
WDP_to_APP queue in the receiver side is a subset of the App_to WDP queue when the sender
was in its initial state and that the GDP_to_APP queue in the receiver side is a prefix of the
App_to_GDP queue when the sender was in its initial state. The use of the initial state of
the sender in this formulation is necessary because the queues will have data removed as the
protocol executes.

3.2 Weak Delivery Protocol (WDP)

WDP is designed to satisfy the weak delivery requirement. The goal is to send and deliver
messages to and from the application level as promptly as possible. In this application
domain, stale data is useless so if a message is corrupted or lost in transmission it should
not be resent. Nor should messages be buffered at either the sender or the receiver. This
is a very basic protocol that simply moves data from the application layer to the link layer
without really performing any processing. The sender and receiver are modeled as separate

processes.
The state of WDP sender is defined as

WDPSender = App_to_WDP: fifo[Data] x
link : LinkInterface X
ether : EtherInterface X

nop : Boolean,

forming a tuple of the queue containing data to be sent, an interface to the link layer holding
the WDP_to_LL and LL_to_WDP queues, an interface to the ether, and a Boolean that is true
if no action is taken.

The WDP sender protocol is defined as a state transition function that maps the current
WDP sender state to the next state:

WDPSenderNext: WDPSender —— WDPSender.

The function behaves as follows. If the App_to_WDP queue is nonempty, then remove the next
message from App_to WDP and add it to the WDP_to_LL queue in the 1ink interface.
The state of the WDP receiver is defined as

WDPReceiver = WDP_to_App: fifo[Data] X
link : LinkInterface X
ether : EtherInterface X

nop : Boolean,

forming a tuple of the queue where the received data will be placed, an interface to the link
layer holding the WDP_to_LL and LL_to_WDP queues, an interface to the ether, and a Boolean
that is true if no action is taken.

The WDP receiver is defined as a state transition function that maps the current WDP
receiver state to the next state:

WDPReceiverNext: WDPReceiver — WDPReceiver.

The function behaves as follows. If the LL_to_WDP queue in the 1link interface is nonempty,
then remove the next message from that queue and add it to the WDP_to_App queue.

3.3 Guaranteed Delivery Protocol (GDP)

GDP is designed to satisfy the guaranteed delivery requirement. Intuitively, GDP should
ensure that messages are delivered in the same order as they are sent. In order for the sender
to know that a message has been received, the recipient must send back an acknowledgment.
In protocols such as TCP, this acknowledgment is often piggybacked on a message sent to
the original sender rather than using a dedicated acknowledgment. Given that a significant
percentage of the traffic flow will be from the aircraft to the ground station, this does not
seem like the best design choice. In addition, rather than acknowledging a single message,
it seems more appropriate to acknowledge receipt of a contiguous block of data since this
keeps down the number of acknowledgment packets, which is desirable in this application
domain. Hence, GDP is a sliding-window protocol [24] with block acknowledgment [9].

3.3.1 Sliding-Window Protocol

In general, sliding-window protocols have the following characteristics:
e Fach message has a sequence number that acts as an identifier.

e The protocol receiver process acknowledges the receipt of data messages by sending an
acknowledgment message to the sender.

— If the sender has not received an acknowledgement that a message has been re-
ceived in a predefined time, then a timeout will occur and the protocol will resend
that message.

— If a receiver has already received and acknowledged a message, but the same
message (defined as having same sequence number) is received again, then the
system will resend the acknowledgement, but nothing is done with the data since it
has already been processed. This covers the situation where an acknowledgement
message is lost or corrupted in transit and the sender resends a message.

e There is an upper bound sw on the number of data messages that can be sent without
receiving acknowledgment for any of them. There is also an upper bound rw on the
number of data messages that can be received without sending an acknowledgment.
The value of rw should be chosen so that rw < sw. The value sw is called the sender’s
window size and the value rw is called the receiver’s window size.

The protocol sender maintains a bounded buffer called ackd. This buffer has two fields:
a data field and a Boolean mask field. The GDP protocol moves data from the App_to_GDP
queue to the ackd buffer’s data field when it is to be broadcast and initializes the mask field
to false. The buffer index indicates the sequence order in which messages are sent. Each
data entry is broadcast to the destination, which, at some point in time, sends a response
acknowledging the receipt of some contiguous block of sequence numbers. The mask values
are set to true for those data entries that have been acknowledged.

The variable ns is a pointer to the sequence number of the next data item to be sent and
the variable na is a pointer to the first sequence number that has yet to be acknowledged.
That is, sequence numbers 0,...,na — 1 have all been acknowledged as received by the

Sent

7

at most sw

Sent

-

Not Sent

Acknowledged Not Acknowledged
1 /2|3 |4 6 |7 8 9 |10 |11 | 12 13 |14
t |t |t | f flf | f | f ff f|f f
na ns
Sender (ackd)
at most rw N
Received May be Received Not Received
Acknowledged Not Acknowledged
112 |3 |4 6 |7 |8 | 9|10 |11 | 12 |13 |14
t t t |t flflf |ttt f f f
la nd Ir

Receiver (rcvd)

Figure 2: Sliding window

Sequence
Num

Data

Mask

Sequence
Num

Data

Mask

sender, but sequence number na has not yet been acknowledged. An invariant na < ns <
na + sw is maintained by the sender saying that the window of sent but not acknowledged
data is of size at most sw. The sender will not send messages with a sequence number
greater than na + sw until data message na is acknowledged. The sender may receive
acknowledgments for sequence numbers s, where na < s < ns, in any possible order; yet,
only when acknowledgments for the contiguous sequence numbers na, ..., x, where r < ns,
have been received, is the value of na slid forward to =z + 1.

The receiver also maintains a bounded buffer rcvd containing data received from the
sender. The protocol moves data sent by the sender from the LL_to GDP queue into the
rcvd buffer and sets the mask value at that position to true. The data is indexed by the
sequence numbers. The variable [a points to the last acknowledged sequence number, i.e.,
acknowledgment messages have been sent for sequence numbers 0, . .., la—1. The variable nd
points to the lowest sequence number that has yet to be delivered to the GDP_to_App queue.
The variable Ir points the highest sequence number that has been received and Ir < nd+rw.
The receiver ignores messages with sequence numbers greater than nd + rw. When the
receiver has received the contiguous block of sequence numbers nd, ..., x, the pointer nd is
slid forward to x + 1. Note that messages la,...,nd — 1 have been received, but not yet
acknowledged. Periodically, GDP sends an acknowledgment message that acknowledges the
receipt of messages la,...,nd — 1 and la is reset to nd.

Let us illustrate how the protocol works using the example from Figure 2. Assume that
the sequence numbers 1,2, and 3 have been sent and acknowledged so na = 4 and la = 4.
From the diagram we see that sequence numbers 4,...,12 have been sent, but have not
necessarily been delivered to the receiver. Assume that sequence numbers 4 and 5 have been
sent and received, but not yet acknowledged. Let us also assume that 9,10, and 11 are
delivered to the GDP receiver process, but 6,7, and 8 were lost in transit. At some point the
sender times out and resends these messages. This situation is illustrated in Figure 2. When
sequence numbers 4, ..., 11 have been received by the receiver, the pointer nd slides forward
to 12. When the acknowledgment message is sent by the receiver acknowledging the receipt
of the sequence numbers 4,...,11 the receiver now sets la to 12. If the acknowledgment is
lost in transit, the sequence numbers 4, ..., 11 would eventually be resent and, although the
messages would be ignored, acknowledgments would be resent.

3.3.2 Bounded Buffers

In PVS, we model the windows ackd and rcvd as bounded buffers. The parameter maxsize
defines the upper-bound on the length of the buffer. The type definition for our buffer is as
follows:

Window = 1length:0 < length < maxsize
x mask:{s: ARRAY[(0,...,maxsize — 1) — Boolean]
| V(i : (Length, ... ,maxsize — 1)) : = s(4)}
X data:ARRAY[(0,...,maxsize — 1) — Data]

where mask is a finite sequence of Boolean values and data is a finite sequence of data. Both
sequences are indexed by an integer value of at most maxsize — 1. The protocol only cares
about data indexed by 0,...,length — 1. In particular, we assume that mask(i) is equal
to false for ¢ > length. In the case of the ackd buffer, mask(i) is true if and only if an
acknowledgment has been received by the sender for sequence number na + i. In the case
of the rcvd buffer, mask(i) is true if and only if a message has been received by the receiver
with the sequence number nd + 7.

Recall that when acknowledgments for sequence numbers na, ...,z have been received,
na is slid forward to x + 1 and similarly when messages with sequence numbers nd, ...,y
have been received, nd is slid forward to y + 1. The process of readjusting the window is
handled by the two functions first false and slide. The function first false returns
f such that value of the buffer’s mask at 0,..., f — 1 are all true, but the mask value at f
is false. The lower pointer, either nd or na, of the buffer is moved to the first-false value f.
The function slide takes as parameters a buffer of length n and an index to the first false
in that buffer f and returns a new buffer of size n — f where index ¢ in the new buffer holds
the contents of index ¢ + f in the old buffer. So as long as f > 0, the new buffer has a length
smaller than the original.

In an actual implementation, the bounded nature of the buffer would be handled some-
what differently because sequence numbers must also be bounded. The traditional solution
is to use modulo arithmetic, but this greatly complicates the complexity of the model and
we feel that our design decision to model the finite buffer as we did is a reasonable modeling
trade-off.

3.3.3 Sender

The sender process implements the procedure for the sliding window protocol sender outlined
above. The window ackd is implemented as an instance of Window. The state of the sender
is defined as

GDPSender = App_to_GDP:fifo[Data] X
winsender : WinSenderPrivate X
link : LinkInterface X
ether : EtherInterface X

nop : Boolean,

forming a tuple of the queue holding data to be sent, the local pointers and bounded buffers
of the sender side of the sliding-window protocol, the interface to the link layer containing
the two queues GDP_to_LL and LL_to_GDP, the interface to the ether, and a Boolean that is
set to true if no action is performed.

The sender process is modeled as a state transition function that takes the current state
of the GDP sender and an action to be performed, and returns the next state:

GDPSenderNext: GDPSender x GDPSenderAction —— GDPSender.

The possible actions performed by the sender are send a message, process an acknowledg-
ment, and timeout due to the fact that an acknowledgment has not been received in a

predefined time. The actions are formally defined by the enumeration type:
GDPSenderAction = {Send, GetAck, Timeout}.

The following describes GDP sender transition to the next state. In each case, the next
state is the same as the current state except for the changes described below.

Send. If there is data to be sent and space in the sender window, i.e.,
— empty_fifo?(App_-to_GDP) A ns —na < sw,
then
e If there is no space in the ackd sender window, then the next state is the same as
the current state except that nop is set to true.

e The data is removed from the App_to_GDP queue.

e A GDP frame is formed from the value removed from App_to_GDP and the sequence
number ns and added to the GDP_to_LL queue to send it to the link layer for further
processing.

e ns is incremented by 1.
e ackd is updated, i.e., its length is incremented by 1.
e data(n) is assigned the value of the data removed from the queue and mask(n) is

assigned the value false, where n is the current length of the buffer.

GetAck. An acknowledgment message contains two fields, b and ub, that denote the lower
bound and upper bound on the sequence numbers being acknowledged. If the message
being acknowledged falls outside of the window

b < naVub>ns,

then ignore the message removing it from the LL_to_GDP queue.

If
na < b Aub < ns,

then the next state is the same as the current state with the acknowledgment message
removed from the LL_to_GDP. The ackd mask entries (b — na,...,ub — na are set to
true. The function slide is then invoked to change ackd as described above.

Otherwise, nop is set to true.
Timeout. If a timeout has occurred, because an acknowledgement has not been received
within the predetermined limit, and ns > na, then retransmit data(0), from ackd,

which corresponds to the message with the sequence number na. Otherwise, the next
state is the same as the current state except that nop is set to true.

10

3.3.4 Receiver

The receiver process implements the procedure for the sliding window protocol receiver
outlined above. The window rcvd is also an instance of Window. The state of the sender is

defined as

GDPReceiver = GDP_to_App: fifo[Data] x
winreceiver : WinReceiverPrivate X
link : LinkInterface X
ether : EtherInterface X

nop : Boolean.

This forms a tuple of the queue that will hold the data once it has been received, the local
pointers and bounded buffers of the receiver side of the sliding-window protocol, an interface
to the link layer holding the queues GDP_to_LL and LL_to_GDP, an interface to the ether, and
a Boolean that is set to true if no operations are performed.

The receiver process is modeled as a state transition function that takes the current state
of the GDP receiver and an action to be performed, and returns the next state:

GDPReceiverNext: GDPReceiver X GDPReceiverAction —— GDPReceiver.

The possible actions performed by the receiver are to receive a message or to send an ac-
knowledgment. The actions are formally defined by the type enumeration:

GDPReceiverAction = {Receive, Sendack}.

The following describes GDP receiver transition to the next state. In each case, the next
state is the same as the current state except for the changes described below.

Receive. If the message on the top of the LL_to_GDP queue is not a data message, then nop
is set true. If a data message is on the top of the LL_to_GDP queue, then set a local
variable ¢dx to the value of this message’s sequence number. Depending on the value
of the sequence number, the protocol takes the following action:

o Ifidr > nd+rw V la <idx A idr < nd, then the message is removed from the
LL_to_GDP.

e If idx < la, which means that the message has already been acknowledged, but
for whatever reason the sender has resent it, then send an acknowledgment back.
That is, the message removed from the LL_to_GDP queue and the acknowledgment
added to the GDP_to_LL queue.

o If nd < idxr < nd + rw, then the sequence number is within the window and so
the data is placed in the rcvd buffer at location idx — nd and the mask set to
true.

— The message is removed from the LL_to_GDP queue.
— The message is added to the GDP_to_App queue.

11

— nd is set to the index of the first mask in rcvd that is false.
— Ir is set to the maximum between lr and idx + 1.

— rcvd is slid as explained above.

SendAck. If nd > la, then form an acknowledgment message acknowledging la,...,nd — 1.
The next state is the same as the current state except that

e [a is set to nd

e The new acknowledgment message is added to the GDP_to_LL queue.

3.4 Link Layer

The link layer is intended to serve as an interface between the WDP and GDP layers and
the physical layer. It provides common services needed by WDP and GDP such as error
detection. Although the details are elided in our specification, the assumption is that a
function is applied to an outbound message generating a checksum or some other such value.
The message is then wrapped in a link layer header containing the error-detection code.
The link layer also multiplexes messages sent from the WDP and GDP layers wrapping
them in the common header and demultiplexes them on the receiving side removing this
header and sending the unwrapped frame to the appropriate protocol for processing. The
communication medium is assumed to be unreliable so just because a message was sent by
the link layer does not mean that it will arrive. Also note that the communication medium
may corrupt a message, hence the need for the checksum field. A message that is corrupted
in transit will be dropped.

A link layer frame is composed of a checksum and a disjoint sum of a GDP or a WDP
frame:

LinkFrame: = c¢s :CheckSum X
frame : GDPFrame + WDPFrame,

where 4 denotes disjoint sum. The type CheckSum is defined as a nonempty uninterpreted

type.

LinkInterface represents the interface that the link layer provides to the higher layer
and is defined as a tuple of FIFO queues holding LinkFrame data. The structure is defined
as follows:

The state of the link layer is defined as the following triple:

Link = 1link:LinkInterface X
ether : EtherInterface X

nop : Boolean.

The link layer processing is modeled as a state transition function that given the current
state and an action to perform, returns the next state for the link layer

LinkNext : Link X LinkAction — Link.

12

The transition function performs the following actions: send a GDP message, send a WDP
message, and receive a message. Formally, the actions are defined by the type enumeration:

LinkAction = {SendWDP, SendGDP, Receive}.

Note that the

SendWDP. Broadcast the frame located on the top of the WDP_to_LL queue to the receiver,
ie.,
e Remove the WDP frame, say frame, from the WDP_to_LL queue.
e Create a link frame as the product of frame and the frame’s checksum.
e Place the linkframe in the ether.
SendGDP. Broadcast the fame located on the top of the GDP_to_LL queue to the receiver,
ie.,
e Remove the GDP frame, say frame, from the GDP_to_LL queue.
e Create a link frame as the product of frame and the frame’s checksum.

e Place the linkframe in the ether.
Receive. Let linkframe be the link layer frame removed from the ether,

e If the checksum on the linkframe is not valid, then the next state is the same as
the current state except that nop is set to true.

e If the linkframe is a GDP message, then add the GDP frame to LL_to_GDP queue
and remove linkframe from the ether.

o If the linkframe is a WDP message, then add the WDP frame to LL_to _WDP
queue and remove linkframe from the ether.

3.5 Ether

The ether is an unreliable communication medium where messages can sometimes be du-
plicated, dropped, or corrupted by noise. Our model reflects the unreliable nature of the
medium.

The EtherInterface is specified as follows:

EtherInterface = input : bag[LinkFrame] X
output : bag[LinkFrame].

The link layer sends messages by placing link frames into its ether input channel and receives
frames on its ether output channel. In practice, a node acting as a sender places information
on its input channel so that same channel must be the output channel at the receiver.

The state of the ether layer is defined as the following triple:

Ether = ether : EtherInterface X

nop : Boolean.

13

Ether processing is structured as a state transition function that given the current state and
an action to be performed, returns the next state:

EtherNext : Ether X EtherAction — Ether.

The transition function may drop, duplicate, or corrupt messages. The actions are formally
defined by the following enumeration type:

EtherAction = { DropIn, DropOut, DupIn, DupOut, NoiseIn, NoiseQOut }.

DropIn. Drop a specified frame in the input channel by removing that frame from the input
multiset.

DropOut. Drop a specified frame in the output channel by removing that frame from the
output multiset.

DupIn. Duplicate a specified frame in the input channel by adding an additional copy of
the frame to the input multiset.

DupOut. Duplicate a specified frame in the output channel by adding an additional copy of
the frame to the output multiset.

NoiseIn. A noise corrupted frame is added to the input channel.

NoiseOut. A noise corrupted frame is added to the output channel.

4 SPECIFICATION OF SENDER AND RECEIVER PROCESSES

Thus far, we have described each layer of the protocol stack individually. In this section,
we show how these layers are composed to form a protocol stack. First, we will look at the
WDP and GDP protocols in isolation and then we shall see how these two protocols can be
composed asynchronously.

For each one of the WDP and GDP protocols, we will assume that we have two processes:
a sender process and a receiver process. The WDP sender and receiver processes are called
WDPSender? and WDPReceiver?, respectively. Similarly, the GDP sender and receiver pro-
cesses are called GDPSender? and GDPReceiver?, respectively. These processes behave in a
non-deterministic way. Hence, each one of them is defined as relation between the current
state and one of the possible next states.

For instance, GDPSender?, which relates the current state of the GDP sender process and
a possible next state, is defined as either a GDPSenderNext transition, a LinkNext transition,
or a EtherNext transition, where the fields that are not modified by the transitions remain
unchanged. As explained in Section 3, each one of these transitions depends upon a par-
ticular action. In order to model the non-deterministic nature of actions, we use existential
quantifiers to generate actions for each transition. The relation GDPSender? is formally
expressed as follows:

GDPSender?(s,n : GDPSender) = (3 a:GDPSenderAction. n = GPDSenderNext(s,a)

A —s‘nop A —m‘nop

14

V

(3 a:LinkAction. n; = LinkNext(s;, a)
A —s;‘nop A —mny‘nop
A n‘App_to_GDP = s‘App_to_GDP
A s‘winsender = n‘winsender)

V

(3 a: EtherAction. n, = EtherNext(s,,a)
A —s.‘nop A —n.‘nop
A n‘link = s‘link
A n‘App_to_GDP = s‘App_to_GDP

A s‘winsender = n‘winsender),

where s and n stand for the current and next GDPSender state, respectively, and the back-
quote symbol is the field access operator. We denote by sub-indices [and e the projections
of states s, n into Link and Ether states, respectively.

The relations GDPReceiver?, WDPSender?, and WDPReceiver? are defined in a similar
way.

GDPReceiver?(s,n : GDPReceiver) = (J a:GDPReceiverAction. n = GPDReceiverNext(s,a)

A —s‘nop A —n‘nop

(3 a:LinkAction. n; = LinkNext(s;, a)
A —s;'nop A —n;‘nop
A n‘GDP_to_App = s‘GDP_to_App

A s‘winreceiver = n‘winreceiver)

(3 a: EtherAction. n, = EtherNext(s,, a)
A —s.‘mop A —n.‘nop
A n‘link = s‘link
A n‘GDP_to_App = s‘GDP_to_App

A s‘winreceiver = n‘winreceiver).

WDPSender?(s,n : WDPSender) = (n = WDPSenderNext(s)
A —s‘nop A —n‘nop
\%
(3 a:LinkAction. n; = LinkNext(s;, a)

A —s;'nop A —n;‘nop

15

A n‘App_to_WDP = s‘App_to_WDP)

\%
(3 a: EtherAction. n, = EtherNext(s,, a)
A —Se‘nop A —ne‘nop
A n‘link = s‘link
A n‘App_to_WDP = s‘App_to_WDP).
WDPReceiver?(s,n : WDPReceiver) = (n = WDPReceiverNext(s)
A —s‘nop A —n‘nop
\%
(3 a:LinkAction. n; = LinkNext(s;, a)
A —si‘nop A —ny‘nop
A n‘WDP_to_App = s‘WDP_to_App)
\%

(3 a: EtherAction. n, = EtherNext(s,, a)
A —s.‘mop A —n.‘nop
A n‘link = s‘link
A n‘WDP_to_App = s‘WDP_to_App).

We define a sender process, which conforms to the protocol stack, as the asynchronous
composition of the WDP and GDP sender processes. Formally, the state of the sender
process is the union of the fields in WDPSender and GDPSender:

Sender = App-to_GDP: fifo[Data] X
App_to_WDP : fifo[Data] X
winsender : WinSender X
link : LinkInterface X

ether : EtherInterface.

The relation between the current state of the sender and a possible next state is as either a
WDPSender? transition or a GDPSender? transition. As in the previous relations, fields that
are not modified by the transitions remain the same:

Sender?(s,n : Sender) = WDPSender?(Sys, Mws)
A s‘App_to_GDP = n‘App_to_WGDP

A s‘windsender = n‘winsender

GDPSender?(s s, ngs)
A s‘App_to_WDP = n‘App_-to_WDP.

16

We denote by sub-indices ws and gs the projections of states s,n into WDPSender and
GDPSender states, respectively.

In a similar way, the receiver process is defined as the asynchronous composition between
the WDP and GDP receiver processes. Formally,

Receiver = GDP_to_App: fifo[Data] x
WDP_to_App : fifo[Data] x
winreceiver : WinReceiver X
link : LinkInterface X

ether : EtherInterface.

Receiver?(s,n) = WDPReceiver?(Sy,,nwr)
A s‘GDP_to_App = n‘GDP_to_App

A s‘windreceiver = n‘winreceiver

GDPReceiver?(s,,, ng.)
A s‘WDP_to_app = n‘WDP_to_app,

where sub-indices wr and gr denote the projections of states s,n into WDPReceiver and
GDPReceiver states, respectively.

5 PROTOCOL VERIFICATION

In this work, we focus on the functional correctness of a distributed system that consists of
a sender node and receiver node communicating via our protocol stack through the ether.
Each node has both the GDP and WDP processes, but for the sake of analysis we consider
a sender and receiver and assume that they are located at different nodes. We denote that
system by WDP || GDP. The system configuration is illustrated by Figure 3.

5.1 Distributed System

We formally specify the distributed system WDP || GDP as a state transition system using a
set of PVS theories developed by Rusu [21]. In those theories a state transition system is
defined by an initial set of states and a state transition relation. The set of reachable states
is the set of states in the reflexive-transitive closure of the transition relation starting from
the set of initial states. The functional correctness of a system specified this way is expressed
by invariant properties, i.e., predicates that hold in every reachable state of the system.
Formally, the state of WDP || GDP, namely WDP_GDP, is composed of the union of fields in
Sender and Receiver, where the ether interface is shared between the two processes:

WDP_GDP = App_to GDP: fifo[Data] X
App_to_WDP : fifo[Data] X
GDP_to_App : fifo[Data] x
WDP_to_App : fifo[Data] X

17

Application Application

~Send Receive

) t t

WDP | [GDP WDP GDP

Send Send Receive || Receive
! Vit t Lot
Link Link
Send Receive
Ml o

Ether

Figure 3: Sender/Receiver processes

winsender : WinSender X
winreceiver : WinReceiver X
linksender : LinkInterface X
linkreceiver : LinkInterface X

ether : EtherInterface.

At the initial states, the queue App_to_GDP contains the data to be sent using GDP and the
queue App_to WDP contains the data to be sent using WDP. All the other queues and the
ether channels are empty.

The transition relation of WDP || GDP is defined as either a Sender? transition or a
Receiver? transition, where the fields that are no modified by the transitions remain the
same:

WDP_GDP?(s,n : WDP_GDP) = Sender?(ss, ns)
A s‘GDP_to_App = n‘GDP_to_App
A s‘WDP_to_App = n'WDP_to_App
A s‘winreceiver = n‘winreceiver

A s‘linkreceiver = n‘linkreceiver

Receiver?(s,,n,)

A s‘App-to_GDP = n'App_-to_GDP
A s‘App_to_WDP = n‘App_to_WDP
A s‘winsender = n‘winsender

A s‘linksender = n‘linksender.

18

The sub-indices s and r denote the projections of states s,n into Sender? and Receiver?
states, respectively. In the case of s, and n, the input and output channels of the ether are
exchanged, i.e.,

s.'ether‘input = s ‘ether‘output,
s.‘ether‘output = ss'ether‘input,

n,'ether‘input = ng'ether‘output,
n,'ether‘output = n,'ether‘input.

The invariant predicate that expresses the correctness property of WDP is defined as
follows:

WDP_sound(s, sp : WDP_.GDP) = s‘WDP_to_App C sy‘App-to_WDP,

where s refers to a reachable state of the distributed system and sy refers to an initial state.
This invariant states that WDP data that the receiver process delivers to the application
layer were indeed sent by the sender’s application layer.

The invariant predicate that expresses the correctness property of GDP is defined as
follows:

GDP_sound(s, so : WDP_GDP) = s‘GDP_to_App =< s,‘App_to_GDP,

where =< is the prefix relation between sequences. This invariant states that GDP data are
delivered by the receiver to the application layer in the same order as they were sent by the
sender’s application layer.

Our verification objective is to formally prove that these two predicates, WDP_sound and
GDP_sound, are indeed invariants of the distributed system WDP || GDP. A direct proof of these
properties can be accomplished by strengthening the invariant to a form that can be proved
by induction on the length of reachable traces, for example using the PVS theories provided
in [21]. However such a proof is extremely cumbersome since it requires a case analysis
of more than 600 cases, which correspond to all possible interleavings between sender and
receiver processes of WDP and GDP.

Instead of a direct proof, we propose a compositional approach where each invariant is
independently proved for its respective system, i.e., WDP_sound is an invariant of WDP and
GDP_sound is an invariant of GDP, and then we provide a general framework that enables to
lift these invariants to the distributed system WDP || GDP.

5.2 Proving Invariants on WDP and GDP

We first consider the case of a system of a sender and receiver WDP processes. The state
of this system, called WDP, is a tuple composed of the union of the fields in WDPSender and
WDPReceiver where the ether interface is shared between the two processes.
WDP = App_to WDP: fifo[Data] X
WDP_to_App : fifo[Data] x
linksender : LinkInterface X
linkreceiver : LinkInterface X

ether : EtherInterface.

19

The WDP? transition relation is defined as follows:

WDP?(s,n : WDP) = WDPSender?(s,,ns)
A s‘WDP_to_App = n'WDP_to_App

A s‘linkreceiver = n‘linkreceiver

WDPReceiver?(s,,n,)
A s‘App_to_WDP = n‘App_to_WDP

A s‘linksender = n‘linksender.

As in the case of WDP || GDP, the projections from a WDP state into a WDPSender state and
into a WDPReceiver state are defined such that the input and output channels of the ether
interface in the sender process are connected, respectively, to the output and input channels
of the ether interface in the receiver process:

s,.‘ether‘input
s,‘ether‘output
n,‘ether‘input

n,‘ether‘output

Ss‘ether‘output,
5s'ether‘input,
ns'ether‘output,

ns‘ether‘input.

The system GDP is defined in a similar way:

GDP = App_to.GDP: fifo[Data] X
GDP_to_App : fifo[Data] X
winsender : WinSender X
linksender : LinkInterface X
winreceiver : WinReceiver X
linkreceiver : LinkInterface X

ether : EtherInterface.
The GDP? transition relation is defined as follows:

GDP?(s,n : GDP) = GDPSender?(ss,n;)
A s‘GDP_to_App = n‘GDP_to_App
A s‘winreceiver = n‘winreceiver

A s‘linkreceiver = n‘linkreceiver

GDPReceiver?(s,,n,)
A s‘App-to_GDP = n‘App_to_GDP
A s‘winsender = n‘winsender

A s‘linksender = n‘linksender.

20

Proving invariants on transition systems, such as WDP and GDP, are routine in the theo-
rem proving community. It usually entails the transformation of the initial invariant to an
inductive form, i.e., a stronger invariant that can be proved by induction.

The main difficulty remains the finding of auxiliary invariants that enable the inductive
proof of the original invariant. For WDP and GDP the problem is further complicated by the
fact that we have to consider the full protocol stack and all possible interleavings between the
sender and receiver processes. The number of interleavings for each system is significantly
lower than for the composed system WDP || GDP, 21 cases for WDP and 31 cases for GDP, but
it is still a tedious task. For each one of these cases we have to prove that if an invariant is
satisfied at step n, it is also satisfied at step n + 1. This is a considerable amount of work
even though most of the cases can be easily discharged by using general properties of bags,
queues, and bounded buffers.

To automate the verification task, we have defined a set of proof strategies that unfold
the transition relations WDP? and GDP? and discharge the easy cases of inductive proofs. Even
in the cases where the strategies do not succeed, they generate enough information to assist
a developer in finding weaker invariants. The strategies can be applied to discrete transition
systems defined in PVS using Rusu’s theories, but are particularly suitable for protocols that
use data structures such as bags, FIFO queues, and bounded buffers.

Theorem 1. WDP_sound is an invariant on WDP.

Proof Sketch. The proof that WDP_sound is an invariant of WDP only requires two proof com-
mands. The first command is our strategy discharge-inv, which automatically proves 20 of
the 21 inductive cases. The unproven case suggests an auxiliary invariant that states that all
WDP frames in the link layer and in the ether belongs to so‘App_to_WDP. Once this invariant
is added as a lemma to the theory, the proof is finished by using our strategy use-inv. To
prove the auxiliary invariant, we follow the same approach, which suggests the new invariant:

5‘WDP_to_App C sy‘WDP_to_App.
This new invariant is automatically discharged by discharge-inv. O
Theorem 2. GDP_sound is an invariant on GDP.

Proof Sketch. The soundness proof of GDP is considerably more complicated than the sound-
ness proof of WDP, but the general method is the same. We use our strategy discharge-inv
to eliminate the easy cases and we add new invariants to discharge the unproven cases via
use-inv. We iterate this approach on the new invariants. In total we have added 6 auxiliary
invariants as lemmas, including the following relations between the sender’s and receiver’s
windows:

e The counter of received messages is less than or equal to the counter of sent messages:

s‘winreceiver‘lr < s‘winsender‘ns

e The counter of delivered messages is less than or equal to the counter of sent messages:

s‘winreceiver‘nd < s‘winsender‘ns

21

e The largest sequence number for which an acknowledgment has been received is less
than or equal to the counter of the sent acknowledgments:

s‘winsender‘na + last_true(s‘winsender‘ackd) < s‘winsender‘la,

where the function last_true returns the difference between s‘winsender‘na and the
largest sequence number for which an acknowledgment has been received.

]

As a point aside, we note that the invariants we have discussed in this section involve
relationships between the sender and the receiver processes. There are many relationships
that are local to either the sender or the receiver. For instance, the property that states that
the index of the next message to be sent is greater than or equal to the index of the next
message waiting to be acknowledged, i.e., s'‘'winsender‘na < s‘winsender‘ns, only concerns
the sender process, and the property that states that the index of the next message to be
delivered is greater than or equal to the index of the last message to be acknowledged,
i.e., s‘'winreceiver‘la < s‘winreceiver‘nd, only concerns the receiver process. As these
properties can be described solely in terms of either GDPSender or GDPReceiver, they can
be easily encoded using the PVS’s dependent type system and automatically discharged by
the type checker.

5.3 Proving Liveness for GDP

The soundness property for GDP that was proved above corresponds to a safety property. We
now consider a liveness property for GDP. While a soundness property states something bad
does not happen, liveness states that something good will eventually happen. In the case of
a sliding window protocol, liveness means that messages sent from the sender will eventually
arrive at the receiver. Yet there are some complications to resolve. If some data is never sent,
then it would be difficult to see what liveness property for GDP could be formulated under
such conditions. Consequently, liveness properties are formulated under the assumption that
the system behaves in a ‘fair’ manner. For GDP, the fairness property says that all messages
in the App_to_GDP queue are eventually sent. That is, for every message in App_to_GDP, it
is eventually the case that a state is recorded where each message has been sent. Since it
is an invariant that ns always points to the next item to be sent in ry‘App_to_GDP, we can
state the fairness property as saying that given any run of the protocol, for every sequence
number m < ro‘App_to_GDP ‘length, the run records a state where ns > m. This is stated
formally as follows:

fair[(run)] = A(r: (run)) : V(m : below(ry‘App-to_GDP‘length) :

3(n : Nat) : r, ‘winsender ‘ns > m.

In principle, the liveness property should state that all messages that are sent are even-
tually received. Yet this is not possible to prove given our assumption that App_to_GDP is
of finite length. To see why, recall that the sender maintains a sliding window with size

22

sw and that the protocol ensures that all data with sequence numbers below na have been
delivered. The invariant na < ns < na + sw relates the values of na and ns. If the fairness
condition is satisfied, that is all of the data in the App_-to_GDP queue has been sent and
ns is equal to the length of the queue and the value of na is undetermined (except for the
relation governed by the invariant), then based on the knowledge of the sender, we can only
prove that the first 0, ..., ro‘App_to_GDP ‘length — sw items eventually arrive at the receiver.
Consequently, our liveness property says that all data with a sequence number less than
ro'App-to_GDP ‘length — sw eventually arrive at the receiver. Formally, this is expressed as
a predicate on the runs of the protocol as follows:

live[(run)] = A(r: (run)) : ¥Y(m : below(r‘App_to_GDP‘length - sw):

d(n : Nat) : 7, ‘winreceiver ‘nd > m.

Note that it is an invariant that
nd = r,,'GDP_to_App‘length

so the predicate expresses the desired property that for a given run it is eventually the
case that all the messages with sequence numbers less than ro‘App_to_GDP‘length - sw are
placed in the GDP_to_App queue.

Several lemmas aide in the task of showing liveness follows from fairness. The predicate
fair_aux1 says that for all data with a sequence number less than ry‘App_to_GDP‘length — sw
it is eventually the case that the sender knows that these sequence numbers have been
delivered.

fair aux1[(run)] = A(r: (run)) : V(m : below(r‘App-to_GDP‘length - sw):

d(n : Nat) : r, ‘winsender ‘na > m.

The following lemma says that fair_aux1 follows from fair:
Lemma 1. Y(r : (run)) : fair = fair_auzl.

Proof Sketch. The crux of the proof is to skolemize the variable m in the consequent, which
has a type 0 < m < ry‘App-to_GDP ‘length - sw, and then instantiate m in the antecedent,
which has a range 0 < m < ry‘App_to_GDP‘length, to m + sw. Applying the invariant
na < ns < na + swyields m+sw < ns <na + sw from which we can conclude m < na. [

Recall that the receiver maintains a pointer la indicating that all sequence numbers
below la have been acknowledged. The predicate fair_aux2 says that for any given run,
for all sequence numbers less than ry‘App_to_GDP‘length - sw there is a state where these
sequence numbers have been acknowledged.

fair aux2[(run)] = A(r: (run)) : ¥Y(m : below(r‘App-to_GDP‘length - sw):

d(n : Nat) : r, ‘winreceiver‘la > m.

The next lemma relates the sender and receiver saying the fair_aux2 follows from fair_auxl.

23

Lemma 2. V(7 : (run)) : fair_auzl = fair_auz2

Proof Sketch. The lemma follows from the antecedent and the invariant that na <la [
The liveness theorem states that liveness follows from fairness

Theorem 3. Y(r : (run)) : fair = live

Proof Sketch. The result follows from the above lemma. O

5.4 Proving Invariants on WDP | GDP

We have seen that WDP_sound is an invariant of WDP and that GDP_sound is an invariant of
GDP. However, our verification objective is to show that both of them are also invariants of
WDP || GDP. This goal could be trivially achieved if WDP and GDP were completely independent.
They are not. Asillustrated by Figure 3, WDP and GDP share the link layer and ether interfaces.

In order to prove that a predicate is an invariant of a composed system, such as WDP ||
GDP, we develop a general theory of asynchronous composition of transition systems where
invariants on one system can be lifted to the composed system. To this end, we consider that
the state of a transition system consists of a private state and a shared state. The state of
the composed system has a copy of the private states of each transition system but only one
shared state common to both of them. When the composed system performs a transition
in one of the constituent parts of the system, the private state of the other system remains
unchanged.

We define an abstraction a of a transition system 7' as a function that maps states into
states such that

1. if sg is an initial state in 7', then a(sp) is also an initial state of 7', and
2. if (sp, Spt1) is a transition in 7', then (a(s,), a(s,11)) is also a transition in 7.
Given this definition, we formally prove the following theorem:

Theorem 4 (Invariant Left-Lifting). Let P be an invariant of a transition system Ty. The
predicate P is an invariant of the transition system Ty || Ty if there is an abstraction « of
T such that the following conditions are met:

1. P is orthogonal to «, i.e., P(a(s)) implies P(s), and

2. under the abstraction o, Ty does not interfere with Ty, i.e., if (Sp, Spt1) 1S a transition
in Ty, then (a(sy), a(spy1) s a transition in Ty.

Proof Sketch. Consider an arbitrary trace sg,..., S, in T} || T5. We will show that P holds
in s,. First, we show that a(sg),...,a(s,) is a trace in T;. There are two cases:

1. The transition (s;, s;41) is a T} transition. In this case, (a(s;) — a(s;41)) is also a T}
transition since « is an abstraction.

2. The transition (s;, s;+1) is a Ty transition. In this case, (a(s;),a(s;11)) is also a T}
transition since 75 does not interfere with 77.

24

Therefore, a(sp), ..., a(s,) is a trace in T;. Since P is an invariant on T, P holds in «a(s,,).
Since P is orthogonal to «, P holds in s, as well. O]

A symmetric theorem for the right transition system can be proved in a similar way.

Theorem 5 (Invariant Right-Lifting). Let P be an invariant of a transition system Ty. The
predicate P is an invariant of the transition system Ty || Ty if there is an abstraction « of Ty
such that P is orthogonal to «, and under the abstraction «, T, does not interfere with T.

For the case of the distributed system WDP || GDP, the queues App_to_WDP and WDP_to_App
are private to WDP. The queues App_to_GDP and GDP_to_App, and the fields winsender and
winreceiver are private to GDP. All the other fields. i.e., the link and the ether interfaces,
are shared.

Theorem 6 (WDP Soundness). WDP_sound is an invariant on WDP || GDP.
Proof Sketch. We consider an abstraction o, (s : WDP) such that a,,(s) = s in all fields but:

@, (s‘1ink‘GDP_to_Link
Qlyy (8‘1 ink‘Link_to_GDP

= empty,
= empty,

a,(s‘ether‘input) = remove gdp(s‘ether‘input),

)
)
)
)

ay,(s‘ether‘output) = remove gdp(s‘ether‘output),

where empty is the empty queue and remove_gdp removes all GDP frames from a multiset.
Then, we prove that «,, is indeed an abstraction of WDP, that WDP_sound is orthogonal to
Qu,, and that, under «,,, GDP does not interfere with WDP. Therefore, by theorems 1 and 4,
WDP_sound is an invariant on WDP || GDP. O

Theorem 7 (GDP Soundness). GDP_sound is an invariant on WDP || GDP.

Proof Sketch. We consider an abstraction ay(s : GDP) such that ay(s) = s in all fields but:

ay(s'1link‘WDP_to_Link) = empty,
ay(s'link‘Link to_ WDP) = empty,
ay(s‘ether‘input) = remove_wdp(s‘ether‘input),
a4(s‘ether‘output) = remove wdp(s‘ether‘output),

where remove_wdp removes all WDP frames from a multiset. Then, we prove that «, is
indeed an abstraction of GDP, that GDP_sound is orthogonal to «,, and that, under oy, WDP
does not interfere with GDP. Therefore, by theorems 2 and 5, GDP_sound is an invariant on
WDP || GDP. O

As in the case of invariants, we have developed proof strategies to prove that a given
function is an abstraction, and that the orthogonality and noninterference conditions are
satisfied.

25

6 RELATED WORK

Numerous variations of the basic sliding window protocol have been subjected to formal
verification. Stenning [23] is likely to have been the first to discuss the correctness of such
protocols. Virtually every study has focused on proving safety properties just as we have.
Several case studies have been produced deriving sliding window protocols using the method-
ology originated by Dijkstra’s school. Van de Snepscheut [8] transforms a sequential program
while preserving its correctness and Hoogerwoord [12] applies a methodology for deriving
multiprograms to derive a sliding window protocol. In both cases, the protocol assumes
unbounded window size. Process algebras have also been used to manually verify one-bit
sliding window protocols [25, 3].

Model checking has been applied to a number of sliding window protocols. Holzmann [10,
11] verified both safety and liveness properties for a protocol with a window size of five
and [14] did the same for a protocol with a window size of seven. Applying abstraction and
model checking, Sthal was able to verify the a protocol with a window size of sixteen [22].

Others have also applied automated theorem provers to verify sliding window protocols.
Cardell-Oliver used HOL to verify safety properties [4]. A timed model was given in [7] and
a safety property is verified using PVS. Rusu [21] proved safety and liveness of a protocol
with unbounded window size in PVS. Safety and liveness properties of a protocol with
arbitrary finite window size employing modulo-arithmetic were verified using process algebra
techniques with the assistance of the PVS prover in [1].

The sliding window protocols verified in aforementioned efforts were considerably sim-
pler than the sliding window protocol with block acknowledgment response that we have
presented here. Only [1] also considers a protocol with arbitrary, but finite window size.
Previous work considered the sliding window protocol acting in isolation rather than as a
component in a protocol stack, which added considerable complexity to the proofs, but is
required to accurately model the communication process.

Concurrently executing programs are complex artifacts making it difficult to reason about
their correctness. For parallel programs with shared variables, the classical theory of Owicki
and Gries [18] was the first breakthrough for reasoning about the correctness of parallel
programs having shared variables, but the theory is not compositional. Assume-Guarantee
methods modify the theory to be compositional [16, 13, 15, 26]. Rushby [20] has developed
a version of an assume-guarantee rule for use in the verification of timed reactive systems.
Charpentier [6, 5] has recently explored the composition of invariants for concurrent systems.
In this research the authors explored both invariants satisfied by every component of the
composed system as well as situations similar to the one we explored where an invariant in
the composed system is satisfied by one component of the composed system. Our approach
is not as powerful as assume-guarantee methods, but is largely mechanizable as we have
shown here. We believe that our method is suitable for composition of protocol stacks that
share the lower communication layers.

7 CONCLUSION

In this paper, we have presented the formal verification of a communication protocol between
an airborne vehicle and a ground station. The protocol stack is structured as an application
layer, transport layer, and link layer. Separate protocols have been presented that satisfy

26

the safety requirements of weak delivery and guaranteed delivery. The model for each layer
is described in some depth as is the composition of the layers. In addition, we have presented
the theorems that characterize the functional correctness of the proposed protocol.

We aim to support an iterative protocol design process and a rapid prototyping environ-
ment. To this end, we propose a hierarchical verification approach where safety properties
are first proved for the individual components of the protocol and then lifted to the composed
system. This approach is largely mechanizable and we provide several proof strategies that
automate most of the verification burden.

Our formal development in PVS consists of 28 theories and 129 lemmas. In total, there
are 1758 lines of specification, 4987 lines of proofs, and 712 lines of strategy code. Most of
these theories concern the specification and verification of the proposed protocol. However,
we also provide a general theory for the asynchronous composition of transition systems
and general strategies to prove invariants, abstractions, and the orthogonality and noninter-
ference conditions. We believe that this verification framework can be applied to a family
of distributed protocols, particularly those protocols that use data structures such as bags,
FIFO queues, and bounded buffers.

REFERENCES

[1] B. Badban, W. Fokkink, J Groote, J. Pang, and J. van de Pol. Verification of a sliding
window protocol in uCRL and PVS. Formal Aspects of Computing, 17:342—-388, 2005.

[2] R. Bailey, R. Hostetler, K. Barnes, C. Belcastro, and C. Belcastro. Experimental vali-
dation subscale aircraft ground facilities and integrated test capability. In Proceedings
of the ATAA Guidance Navigation, and Control Conference and Ezhibit 2005, San Fran-
cisco, California, 2005.

[3] J. Brunekreff. Sliding window protocols. In Algebraic Specification of Protocols, num-
ber 36 in Cambridge Tracts in Theoretical Computer Science, pages 71-112. 1993.

[4] Rachel Mary Cardell-Oliver. The Formal Verification of Hard Real-Time Systems. PhD
thesis, University of Cambridge, 1992.

[5] M. Charpentier. Composing invariants. Science of Computer Programming, 60:221-243,
2006.

[6] M. Charpentier and K. M. Chandy. Specification transformers: A predicate transformer
approach to composition. Act Informatica, 40:265-301, 2004.

[7] D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the sliding
windonw protocol. In Proceedings of the 9th Conference on Tools and Algorithms for the
Construction of Analysis of Systems (TACAS’03), Lecture Notes in Computer Science
2619, pages 113-127. Springer-Verlag, 2003.

[8] J.L.A. Van de Snepscheut. The sliding-window protocol revisited. Formal Aspects of
Computing, 7:3-17, 1995.

[9] M. Gouda. FElements of Network Protocols. Wiley-Interscience, 1998.

27

[10] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1997.

[11] G. Holzmann. The model checker spin. IEEE Transactionsactions of Software Engi-
neerng, 23(4):279-295, 1997.

[12] R. Hoogerwoord. A formal derviation of a sliding window protocol. Technical University
of Eindhoven, 2006.

[13] C. Jones. Tentative steps toward a method for interfering programs. ACM Transactions
of Programming Languages and Systems (TOPLAS), 5(4):596-619, 1983.

[14] R. Kaivola. Using compositional preorders in the verification of a sliding window pro-
tocol. In Proceedings of the 9th Conference on Computer Aided Verification, Lecture
Notes in Computer Science 1254, pages 48-59. Springer-Verlag, 1997.

[15] R. Manohar and P. Sivilotti. Composing processes using modified rely-guarantee. Tech-
nical report, California Institute of Technology, 1996.

[16] J. Misra and K. Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, 7(4):417-426, 1981.

[17] A. Murch. A flight control system architecture for the nasa airstar flight test infrastruc-
ture. ATAA Guidance, Navigation and Control Conference and Exhibit, 18-21 August
2008.

[18] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

[19] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak
Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume 607 of Lecture
Notes in Artificial Intelligence, pages 748-752. Springer-Verlag, June 1992.

[20] J. Rushby. Formal verification of McMilian’s compositional assume-guarantee rule.
Technical report, SRI, 2001.

[21] V. Rusu. Verifying a Sliding-Window Using PVS. In Formal Techniques for Networked
and Distributed Systems (FORTE01), pages 251-266. Kluwer Academic, 2001.

[22] K. Stahl, K. Baukus, K Lakhnech, and Y Steffen. Divide, abstract, and model check.
In Proceedings of the 6th International SPIN Workshop, Lecture Notes in Computer
Science 1680, pages 57—76, 1999.

[23] N. Stenning. A data transfer protocol. Computer Networks, 1(2):99-110, 1976.
4] A. Tannenbaum. Computer Networks. Prentice Hall, third edition, 1996.

[25] F. Vaandrager. Verification of two communication protocol by means of proces algebra.
Technical report, CWI, 1986.

[26] Q. Xu, W. de Roever, and J. He. The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing, 9(2):149-174, 1997.

28

REPORT DOCUMENTATION PAGE orar ApDroved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-04 - 2009 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Design and Verification of a Distributed Communication Protocol

5b. GRANT NUMBER
NNXOBAE37A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Mufoz, César A.; and Goodloe, Alwyn E.

5e. TASK NUMBER

5f. WORK UNIT NUMBER
645846.02.07.07.07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-2199
NIA Report No. 2008-09

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2009-215703

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 62

Availahility: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES
Langley Technical Monitor: Paul S. Miner

14. ABSTRACT

The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between
the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the
communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocolsistypically an
informal process based on successive iterations of a prototype implementation. Y et distributed protocols are notorioudly difficult to get
correct using such informal techniques. We present aformal specification of the design of adistributed protocol intended for usein a
remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow usto
prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire
system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive
proof steps to enable verification of rapidly changing designs.

15. SUBJECT TERMS
Distributed protocols; Software verification; System analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT [b. ABSTRACT [c. THIS PAGE PAGES ST Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U uu 33 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

